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Abstract

In this paper, we compute the equilibrium configurations of a vesicle membrane under elastic bending energy, with

prescribed volume and surface area. A variational phase field method is developed for such a problem. Discrete finite

difference approximations and numerical simulations are carried out in the axial symmetrical cases. Different energetic

bifurcation phenomena are discussed.
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1. Introduction

Recently, there have been many experimental and analytic studies on the configurations and deforma-

tions of elastic bio-membranes [7,17,32,36,38,39]. In this paper, we study the shape transformation of a

single component vesicle, using a phase field approach. While our goal is to study the deformation and
interaction of such vesicles under various external fields, such as the flow fields or electric fields, here we first

focus on the fundamentals of the phase field formulation and its numerical approximations in the absence

of the applied fields.

The usual single component vesicles are formed by certain amphiphilic molecules assembled in water to

build bilayers. They are the simplest models for the biological cells and molecules. The equilibrium shape of

such an membrane is determined by the shape energy. In the isotropic case, it usually consists the following

bending energy [10,11]:
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Eelastic ¼
Z
C

k
2
H 2 ds; ð1:1Þ

where H ¼ ðk1 þ k2Þ=2 is the mean curvature of the membrane surface, with k1 and k2 as the principle

curvatures. The parameter k is the bending rigidity, which can depend on the local heterogeneous con-

centration of the species (such as protein molecules on the blood cells). The bending energy given above is a
special case of a more general form obtained from the Hooke�s Law:

E ¼
Z
C
ðaþ bðH � c0Þ þ cGÞ2 ds; ð1:2Þ

where a is the surface tension, b; c are the bending rigidities and c0 is the spontaneous curvature that de-

scribes the asymmetry effect of the membrane or its environment. G is the Gaussian curvature. For sim-

plicity, here we choose to consider only the energy given in (1.1) and we let k be a constant.

The Euler–Lagrangian equation of (1.1) (without the volume and area constraints) can be shown to be

DH þ 2HðH 2 � GÞ ¼ 0: ð1:3Þ

Notice the above variational problem is closely related to the Willmore�s problem [3,20,44]. Energies of

(1.1) types can also be found in the study of the configurations of smectic-A liquid crystals [13,23], with

connection to the Dupin cyclides [21,23].

One classical method to study the moving interfaces is to employ a mesh that has grid points on the
interfaces, and deforms according to the motion of the boundary, such as the boundary integral and

boundary element methods (cf. [12,22,42] and their references). Keeping track of the moving mesh may

entail computational difficulties and large displacement in internal domains may cause mesh entanglement.

Typically, sophisticated remeshing schemes have to be used in these cases.

As an alternative, fixed-grid methods that regularize the interface have been highly successful in treating

deforming interfaces. These include the volume-of-fluid (VOF) method [24,25], the front-tracking method

[18,19] and the level-set method [8,34,35]. Instead of formulating the flow of two domains separated by an

interface, these methods represent the interfacial tension as a body-force or bulk-stress spreading over a
narrow region covering the interface. Then a single set of governing equations can be written over the entire

domain, and solved on a fixed grid in a purely Eulerian framework.

The energetic phase field model can be viewed as a physically motivated level-set method. Instead of

choosing an artificial smoothing function for the interface, the diffuse-interface model describes the in-

terface by a mixing energy. This idea can be traced to van der Waals [43], and is the foundation for the

phase-field theory for phase transition and critical phenomena (see [5,6,15,31,33,41] and the references

therein). The phase field models allow topological changes of the interface [30] and over the years, they have

attracted a lot of interests in the field of nonlinear analysis (cf. [1,4,9,37,40]). Similar to the popular level set
formulations (see [35] for an extensive discussion), they have many advantages in numerical simulations of

the interfacial motion (cf. [8]). When the transition width approaches zero, the phase field model with

diffuse-interface becomes identical to a sharp-interface level-set formulation and it can also be reduced

properly to the classical sharp-interface model.

In [28,29], we employed numerical methods to simulate the interaction of the flow field with the free

vesicles where the surface energy consists only the surface area (which gives rise to the surface tension in the

momentum equations). The simulation procedure follows an energetic variational approach. The main

attraction for us to use this phase field method is its capability of easily incorporating the complex rheology
of microstructured fluids. This is by virtue of its energy-based variational formalism. The conformation of

the microstructure is governed by a free energy. This can be added to the mixing energy to form the total

free energy of the multi-phase system. Thus, interfacial dynamics and complex rheology are included in a
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unified theoretical framework. Our first step in generalizing such a method for the vesicles with bending

energy is to formulate the energy given by (1.1) in the phase field framework, which is one of the main

contributions of this paper.
Another contribution of this paper is on the numerical solution of the resulting phase field model. While

we follow standard approaches to discretize the underlying variational problem with constraints, we take

extreme caution in ensuring the convergence of the numerical solutions and conduct extensive simulations

in order to probe the energy landscape. Based on the numerical results, we are able to identify many

possible solution branches. Some of the configurations, to our knowledge, are obtained for the first time

using the numerical simulations. An energy diagram characterizing the solution bifurcation and the hys-

teresis phenomena is also presented. Such bifurcation studies have not been done systematically in the

literature before (cf. [39]). The simulations presented in this paper are only performed for the z-axial
symmetric configurations with the prescribed surface area and bulk volume. The axis symmetry limits the

number of possible configurations but the rich solution structures can still be illustrated and the compu-

tation is reduced to a two-dimensional domain. Full three-dimensional problems without the axis symmetry

will be studied in the future.

Many of the configurations, particularly those of discocyte and stomatocyte types, were observed in the

experiments as well as other numerical simulations [26]. Due to the nature of our phase field approach and

that we did not incorporate the mechanism that can prevent the membrane from splitting, our results

include those with nucleation of interior bubbles and holes. On the other hand, this also demonstrate the
capability of the phase field approach of going pass the singularities. The problem involving different

membrane elasticity properties is under investigation.

The rest of the paper is organized as follows. In Section 2, we develop the framework of the phase field

methods and present some brief justifications. In Section 3, we outline the numerical algorithms used to

solve the phase field model and provide some numerical tests on the convergence. In Section 4, we present

the energy diagram for the solution branches and discuss in detail the various solution branches and their

corresponding geometric configurations. In Section 5, we make some concluding remarks. Finally, some

details on the discretization schemes are given in Appendix A.
2. Energetic phase field method

We start by introducing a phase function /ðxÞ, defined on the physical (computational) domain X, which
is used to label the inside and the outside of the vesicle C. We visualize that the level set fx : /ðxÞ ¼ 0g gives

the membrane, while fx : /ðxÞ > 0g represents the inside of the membrane and fx : /ðxÞ6 0g the outside.

Define the following modified elastic energy:

W ð/Þ ¼
Z
X

k�
2

D/

���� � 1

�2
ð/2 � 1Þ/

����
2

dx; ð2:1Þ

where � is a transition parameter that is taken to be very small.

If the membrane C, which is a surface in X, is regular enough, we can always define the following

transformation:

/ðxÞ ¼ q�
dðxÞ
�

� �
; ð2:2Þ

where dðxÞ is the distance of the point x 2 X to the surface C. Substituting this into (2.1), we have that
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W ð/Þ ¼
Z
X

k
2�

q�
0 dðxÞ

�

� �
DdðxÞ

���� þ 1

�
q�

00
�

� q�
2

�
� 1

�
q�
�����

2

dx: ð2:3Þ

As � ! 0, in order to minimize the energy, it follows that

q�
00�� � ðq�2 � 1Þq�

��2 ! 0 ð2:4Þ

which means that q�ð�Þ is approaching to the function tanhð�=
ffiffiffi
2

p
Þ. In the meantime, we see that / is ap-

proaching to the Heaviside function with 1 inside of the interface and �1 outside. C still coincides with the

zero level set of /. Moreover (2.2) indicates that the parameter � is effectively the thickness of the transition
region between f/ ¼ 1g and f/ ¼ �1g.

In the limit, the energy W ð/Þ is approaching to the same energy as in (1.1) (up to a constant multiple).

Moreover, the following functional:

A ¼
Z
X
/ðxÞ dx ð2:5Þ

goes to the difference of inside volume and outside volume and

B ¼
Z
X

�

2
jr/j2

�
þ 1

4�
ð/2 � 1Þ2

�
dx ð2:6Þ

is approaching to 2
ffiffiffi
2

p
areaðCÞ=3, or about 0.94 times the area of C.

Hence we see that the original problem of minimizing the bending energy with the prescribed surface

area and bulk volume constraints can be formulated as finding the function / ¼ /ðxÞ on the whole domain
that minimizes the energy W ¼ W ð/Þ with the constraints of prescribed values for A and B.

When the energy functional involve more anisotropy terms, we can still apply such an approaches, such

as those related in [16,31] with variable rigidity constants.

The advantage of the phase field formulation is that we do not need to track the free surface C. The
computational domain can remain the same although for computational efficiency, it is natural to select a

domain as small as possible so long it properly encloses a suitable neighbor of the membrane under

consideration.
3. Numerical simulations

As stated in the prior sections, our problem is to minimize the elastic energy W ð/Þ for fixed surface area

3
ffiffiffi
2

p
Bð/Þ=4 (taking value b) and volume ðAð/Þ þ volðXÞÞ=2 (taking value a).

This constrained variational problem may be solved by a number of approaches such as the Lagrange

Multiplier Method or the method of normalized gradient flow [2]. Here, we adopt the penalty method with

penalty coefficients M1 and M2. The problem is then becoming the minimization of

Eð/Þ ¼ W ð/Þ þM1ð1=2ðAð/Þ þ volðXÞÞ � aÞ2 þM2ð3
ffiffiffi
2

p
=4Bð/Þ � bÞ2: ð3:1Þ

It is easy to argue that minimizers of the above energy (3.1) exist. Moreover, as the penalty constantsM1;M2

approach to infinity, they approach to the minimizer of W ¼ W ð/Þ with the given constraints.
The nonlinear variational problem is solved via a standard gradient flow approach (see for example

[2,14] and the references cited therein), namely, we consider

ou
ot

¼ � dEðuÞ
du

;
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where d=du denote the first variation of the functional. For simplicity, we also use the notation rEðuÞ to
denote this first variation. Given an initial guess, as t ! 1, the dynamic solutions fuðtÞg converge to a

steady state which is a critical point of the energy E [27].
Since we are primarily interested in the minimizers of the energy, only the long time limit of the above

gradient flow is important. A backward Euler scheme is employed for the time integration of the above

gradient flow to ensure the stability of the time integration and to allow large time steps to be taken for a

faster convergence to the steady state. That is

unþ1 � un ¼ �Dtn
dEðunþ1Þ

du
¼ �DtnrEðunþ1Þ:

As in [2,14], it is easy to verify that the solution of the backward Euler scheme is also the solution of the

minimization problem

min ~EnðuÞ ¼
Z
X

ju� unj2

Dtn
dxþ EðuÞ: ð3:2Þ

Since

Eðunþ1Þ6 ~Enðunþ1Þ6 ~EnðunÞ ¼ EðunÞ;

we see that the backward Euler scheme enjoys the property that the energy is monotonically decreasing in
time. Moreover, un ! /, a critical point of the energy E, as n ! 1.

To implement the gradient flow approach, a spatial approximation is first established. As the numerical

simulations presented in this paper concern mainly on the z-axial symmetrical cases, the three-dimensional

problem is thus simplified to a two-dimensional one. The computational domain is taken to be a subset of

the half plane in the x–z plane. The cross-section of the vesicle in this half plane (x > 0) is computed and the

vesicle is obtained by rotating the two-dimensional shape on the x–z plane around the z-axis. Thus effec-

tively, we may relate x with the radial distance to the z-axis. Without loss of generality, we let the cross-

section of the vesicle be located inside the domain ½0; r� � ½0; a� on the x–z plane. The energy functional 3.2
is then discretized on a spatial m� n mesh in the domain ½0; r� � ½0; a� in the x-z plane using standard

difference approximations, which leads to a discrete gradient flow. The particular form of the discretization

is given in Appendix A.

We note that, in our computation domain, the cross-section of the vesicle surface C of interest becomes a

one-dimensional curve, which can be parameterized by a single variable. Though a reduction to an ordinary

differential–integral equation is possible, such a formulation generally works well only when the curve does

not undergo any topological changes. The phase field approach developed here can handle such changes

with ease and it can be used for the full three-dimensional computation as well, including the anisotropic
cases.

The solution of the Euler scheme for the discrete gradient flow at each step satisfies a nonlinear system of

equations and it is solved by the Newton�s method. The resulting systems of linear equations at each

Newton iteration are solved using a version of the PCG method for sparse matrices with an ICC pre-

conditioner. Newton�s method is generally locally convergent. For a small enough time step, the new so-

lution is very close to the solution at the previous time step, and the Newton�s iteration converges quickly to

a critical point of ~E. However, small Dtn implies that many time integration steps have to be taken in order

to converge to the steady state. In our algorithm, we adjust the value of Dtn so that the Newton�s method
always converges in 3–5 steps. This allows efficient computation at each time step. At the same

time, it leaves room for a large step size when the solution is not varying very fast in time, and thus

leads to a speedy convergence to the steady state. We leave detailed descriptions of the algorithm in

Appendix A.
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For a particular phase field simulation, the quality of the numerical result is affected by the choice of

computational domain, the transition thickness parameter (or the effective width of the diffusive interface)

�, the number of grid points, and the choices of other parameters used in the simulation. Based on the
experience, we generally take a domain significantly larger than the region enclosed by the membrane to be

computed. The parameter � is taken to be just a couple of percentage points of the domain size to ensure a

relatively sharp interfacial region. The mesh size is normally taken to be several times smaller than � to

ensure adequate spatial resolution. To ascertain the accuracy and robustness of our numerical algorithms

and the parameter selections, we here present results of some numerical tests on the convergence and

performance of our method.

The first example is for the same set of parameters (�, a and b) in the same domain of size 2 by 2, but with

different grids of the size 100� 100 and 200� 200, respectively. We choose � ¼ 0:03, volume a ¼ 1:1000 and
the area b ¼ 6:9474 and the penalty parameters M1 ¼ M2 ¼ 105.

The density plots of two numerical approximations of / are shown in Fig. 1. Little difference between the

solutions is visible. Moreover, the computation of the energy W gives energy valued at 71.8767 and 73.4440,

respectively. The 2% energy difference is mostly due to the integration errors under different grids.

The convergence is also evident when different domain sizes are used (so long they are large enough to

contain the vesicle). We compute the problem using two different grids, a 100� 150 grid and a 40� 375

grid, but with same mesh parameter (h ¼ 0:02). This effectively leads to two different domains of sizes 2� 3

and 0.8� 7.5 (see the results in Fig. 2). The same parameters as in the previous run (depicted in Fig. 1) are
used, except with the area b ¼ 6:3640. The energy is 60.6037 for the 100� 150 grid and 61.2120 for the
Fig. 1. Density plots of / with 100� 100 and 200� 200 grids.

Fig. 2. Computation on different domains using 100� 150 and 40� 375 grids.



Table 1

Convergence of the multipliers

M1 ¼ M2 1 2 4 8 16

k1 ð�10�2Þ 4.0428 3.6964 3.5577 3.4951 3.4669

k2 ð�10�3Þ )1.0198 )0.9224 )0.8832 )0.8655 )0.8576

M1 ¼ M2 32 64 128 256 512

k1 ð�10�2Þ 3.4526 3.4424 3.4401 3.4372 3.4376

k2 ð�10�3Þ )0.8535 )0.8506 )0.8495 )0.8491 )0.8492
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40� 375 grid. The small error indicates that the result is insensitive to the change of the computation

domain.

We also investigate the dependence on the penalty parameters M1 and M2. For the case of 200� 200 grid

and the set of parameters being the same as in Fig. 2, we list the values of the corresponding Lagrange

multipliers ki (i ¼ 1; 2) in Table 1. For minimizing the energy W given in (2.3) with constraints g1 ¼ 0 and

g2 ¼ 0 (for area and volume), the multipliers are defined as constants satisfying

k1rg1þ k2rg2þrW ¼ 0

at the minimum. Here, r again refers to first variations of the respective functionals. With the penalty

formulation, the relations between the multipliers and the penalty constants are given by

ki ¼ lim
M1;M2!1

kiðM1;M2Þ for i ¼ 1; 2

with k1ðM1;M2Þ ¼ M1ðAð/Þ þ volðXÞ � 2aÞ, k2ðM1;M2Þ ¼ M2ð3
ffiffiffi
2

p
Bð/Þ=2� 2bÞ.

We can see that for the ever increasing penalty coefficients M1;M2, the multipliers converge to two

constants. This confirms that our solutions indeed are the constrained minimizers of the energy functional.

The final example is designed to test the dependence on the parameter � which measures the interface
thickness. As it is well known that, the grid size has to be smaller than the thickness of the transition layer in

order to resolve the interface, we thus take the 100� 200 grid, with b ¼ 5:8867 and a ¼ 1:1000, for � being
0.02 and 0.015. The difference in the numerical solutions is very small, as shown in Fig. 3 and the corre-

sponding energy values 73.6980 and 72.7080 are very close to each other.

To summarize, the above numerical tests indicate that the simulation of the phase field model can indeed

give convergence numerical solutions. Moreover, as our above experimental results indicate the choices of

various parameter values used in the simulations are capable of ensuring the convergence of the numerical
Fig. 3. The computation under different thickness �: 0.02 vs. 0.015.
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scheme and ensuring the validity of the simulation results when we probe the energy landscape and predict

the vesicle shapes.
4. Simulation results

We now presents computational results that illustrate the various vesicle structures and the energy

landscape.

For the numerical simulations, through a re-scaling, we may take a fixed volume value a and vary the

surface area b. In all the simulations, we take the volume enclosed by the vesicle to be 1.1000 (the particular

value has no physical significance as it is due to a inadvertently chosen scaling in the simulations). For a
perfect sphere, it corresponds to the radius being 0.6404 with the surface area being 5.1536.

For different values of the surface area b with a given volume a that is enclosed by the surface, the

different basic shapes (density plots of /) obtained in the simulation are shown in Fig. 4. The sharp contrast

of the change of color outlines the vesicle boundary. Here, rather than using sophisticated physiological or

biological terminologies, we try to use some more common objects to name the various shapes judging from

their shape resemblance (viewed in the three-dimensional space). For a better visual effect, we give some

three-dimensional views in Fig. 5. Though the shapes computed having the same volume, they have dif-

ferent aspect ratios that make them difficult to be displayed in pictures with the same scale. For this reason,
the plots in Figs. 4 and 5 do not share the same scale and the some vesicle shapes may appear larger than

others.
Fig. 4. The basic configurations: ball, pancake, dimpled-disc, gourd, longan, twin-bubble, round-pot, cherry, pitomba, bangle, torus

and shell.



Fig. 5. 3D views of the twin-bubble, dimpled disc, round-pot and torus.
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Naturally, some of the shapes in Fig. 4 are very similar to each other and are not necessarily topo-

logically different from each other. In biological terms, the pancake or dimpled-disc shape may be referred

as a discocyte while the round-pot, cherry or pitomba shape are classified as a stomatocyte (mouth). These

shapes have been experimentally observed. Other non-axisymmetric vesicle shapes exist as well but they are

not discussed here.

Fig. 6 shows the overall energy landscape and the hysteresis of the solution branches. The numerical

values of the energy in all figures in this paper are those of W ð/Þ in (2.3). In the energy plots, the vertical
axis corresponds to the energy and the values of the area b are represented by the horizontal axis. The

various solution branches are computed through the path following approach. When a particular solution
Fig. 6. Global energy landscape and hysteresis loops.
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branch loses its stability when we probe the parameter values, the numerical solution may jump to a dif-

ferent branch, we record the values of the parameters at which such jumps take place. As we are solving a

nonlinear problem, hysteresis phenomena are expected, that is, when the parameter goes up and down, the
solution may follow different paths.

We now give detailed explanation to each of the curves in Fig. 6. The arrows along the curves in the later

energy pictures indicate the directions of the change of the area value. The reference to the color scheme

may be ignored if monochrome display or printout is used.

We begin by examining the red line redrawn in Fig. 7 (left), which is for the deformation of the torus

shape. The curve can be extended infinitely on both ends. The shape is stable, in the sense that if we start

from the configuration on the curve, it stays on the curve when the surface area changes. There is also a

vertical asymptotic limit at the left end. When the area is less than such a critical value, the shape changes
and it becomes the shape of a longan (an outer sphere containing a small spherical core, this name is used to

distinguish from the solution branch representing the shell shape). In Fig. 8, we give an example to illustrate

the changing of the shape.

The blue line redrawn in Fig. 7 (right) consists of three different deformations. When the area is small

(<5.0117), the vesicle shape looks like a ball. However, the surface area in this case is too small to keep up

with the volume. In reality, there is simply no solution, i.e., no corresponding geometric shape. In the phase
Fig. 7. The change of energy for a torus shape (left) and for a spherical ball to a pancake, a dimpled-disc then to a torus (right).

Fig. 8. Deformation of torus with areas at: 7.4246, 6.8943, 5.8336, 5.3457, and 5.1972.
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field formulation, the solution exists due to an extension of the interface width. From the value 5.0117 to

6.9792, the vesicle changes the shape from a spherical ball to a pancake. After the value increase to 7.0004,

the shape of the vesicle makes a jump to a torus (and the energy actually drops). Fig. 9 shows such a
transformation.

The green solid line, redrawn in Fig. 10, is for the deformation of gourd shape. It is stable in both di-

rections (with area either increasing or decreasing) in the sense that small perturbations do not drive the

solution onto other branches. This green solid line coincides with the blue dash line, which appears in Fig. 7

(right), below value 5.0117 (when they all become spherical ball), see Fig. 11 for an illustration.

When the area is between 5.0117 and 5.1018, the energy value of the pancake is lower than the gourd. It

then surpasses the later after the value 5.1018, see Fig. 12. If we start at a ball and increase the area, it goes
Fig. 9. Deformation of a ball to pancakes, a dimpled-disc and then to a torus with the area valued at: 5.0275, 5.3457, 5.8336, 6.3640,

6.9791 and 7.0004.

Fig. 10. The change of energy for the gourd shape.
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to a pancake and then to a torus when the area becomes large. Both solution curves, however, are stable

individually (checked by the numerical simulations with the addition of small perturbations).

The green line in Fig. 13 indicates that the twin-bubble shape in Fig. 4 jumps to the gourd shape when
the area decreases. However, this process is not reversible: when the area of a gourd increases (Fig. 14), it

keeps on being a gourd as in Fig. 10 (the green line). When the area of a twin-bubble increases, it changes to

a round-pot (cherry) shape and then to a shell shape. However, the energy is almost the same (even with

possible small jumps) (Fig. 15).

The dotted black line in Fig. 16 indicates the deformation of a shell shape when the area decreases. It first

leads to a bangle (with no obvious energy jump), then to a torus (with energy jump at b ¼ 6:6027), then a

longan (energy jump at around b ¼ 5:2768) and finally to a spherical ball (energy jump at around

b ¼ 5:0647) (Fig. 17). It overlaps with part of the red line in Fig. 7 (left). Corresponding to each piece of the
energy curve (in between the jumps), the curve is reversible, that is, the shapes can change back and forth

between the jumps.

The dotted cyan curve in Fig. 18 indicates the change of the shape of longan to a pancake (or a discocyte,

a dimpled-disc), and then a torus when the area increases, as in Fig. 19 illustrated. The energy shows (small)

jumps whenever there is a topological change of the configuration.
Fig. 11. Both the pancake and the gourd shrink to the same ball when the area is small.

Fig. 12. The energy of the pancake surpasses that of the gourd.



Fig. 14. The deformation of a twin-bubble to a gourd with areas 5.8867 and 5.8761.

Fig. 15. The deformation of a twin-bubble to a round-pot and then a shell with a fixed volume and areas of: 5.8867, 6.6928, 6.7140,

7.7322, 7.9656 and 10.6278.

Fig. 13. The change of energy for a twin-bubble to a gourd and a shell.
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Finally, the dotted red curve in Fig. 20 indicates the change of the shape of cherry to a round-pot then to

a pancake when the area increases, as in Fig. 21 illustrated. The jump to the pancake shape occurs at the

same value of surface area as the jump from the longan shape to the pancake depicted in Fig. 19. Before the

jump, the energy stays very close to that of the black dotted line in Fig. 16 and is only slightly larger. One



Fig. 16. Deformation of a shell shape with decreasing area.

Fig. 17. Deformation of a shell to a bangle, a torus, a longan and finally a ball with the area valued at: 9.5459, 6.6291, 6.0988, 5.3457,

5.1972 and 5.0381.

Fig. 18. The change of energy from longan to a pancake, and a torus.

Fig. 19. The deformation of a longan to a pancake and then to a torus when the volume fixed and the area valued at: 5.0912, 5.4624,

6.4170, 6.4435 and 7.0004.
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Fig. 20. The change of energy from a cherry to a round-pot, then a pancake.

Fig. 21. The deformation of a cherry to a round-pot and then a jump to a pancake when the volume fixed and the area valued at:

7.9656, 6.4594, 6.4382.
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may view the two close solution branches as one with the symmetry (in the z variable) and one that loses the

symmetry.

Based on the above results, we see that the application of the phase field approach to the computation of

z-axial symmetric vesicle leads to various interesting configurations that of different shapes. In Fig. 22, we

summarize the transformations between the different shapes, the arrows point to directions with increasing
areas along the solution paths. Some of the configurations, to our knowledge, are obtained for the first time

using the numerical simulation.

Clearly, due to the z-axial symmetry imposed on the solutions, we may not be able to reach from one

particular configurations to all other configurations with the continuation in the area parameter. Further

investigation with full three-dimensional simulations is needed in order to give a complete description of the
Fig. 22. A pictorial illustration of solution paths through various configurations.
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solution manifold. Nevertheless, the simulation results presented here again demonstrate the effectiveness of

the phase field approach in tracking surfaces of varying topologies.
5. Conclusion

In this paper, we study the static deformation of a vesicle membrane under the elastic bending energy,

with prescribed bulk volume and surface area. We discover several axial symmetric configurations using

numerical simulations. The energetic bifurcation landscape is also examined. The application of the phase

field formulation gives us the advantage of avoiding keeping track the free interfaces. Moreover, this ap-

proach fits in existing methods developed to study the interaction of these configurations and the external
applied fields, the specific species inside and surrounding the vesicle, and other surface energies (due to

anisotropy). More extensive three-dimensional simulations and more detailed analysis will be carried out in

our future works.
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Appendix A. Discretization and algorithms

Here, we provide more detailed descriptions of the discrete energy and the numerical algorithm.
We use a uniform m� n mesh with h being the mesh parameter so that r ¼ mh, and a ¼ nh. The dif-

ferential operators is replaced by the standard finite difference operators defined on the given mesh.

Discrete energy. Recall that the energy functional has the form

E ¼
Z
X

k�
2

D/

���� � 1

�2
ð/2 � 1Þ/

����
2

dxþM1

Z
X
/ðxÞ dx

�
� a

�2

þM2

Z
X

�

2
jr/j2

��
þ 1

4�
ð/2 � 1Þ2

�
dx� b

�2

: ðA:1Þ

To discretize the energy functional (A.1), we use the following quadrature:Z
X
f ðxÞ dx � Ihðf Þ ¼

2

9
ph3

Xm
i¼1

Xn

j¼0

ix1ðiÞx2ðjÞfi;j ðA:2Þ

for any function f defined on X, where fi;j is the value of f at the grid point ðih; jhÞ in the m� n mesh, and

weight functions x1 and x2 are defined as following:

x1ðiÞ ¼
1 if i ¼ 0 or m;
2 if i is even and i 6¼ m;
4 otherwise

8<
: ðA:3Þ

and

x2ðjÞ ¼
1 if j ¼ 0 or n;
2 if j is even and i 6¼ n;
4 otherwise:

8<
: ðA:4Þ
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Now, let us turn to the discretization of the terms D/ and jr/j2. Since

D/ðr; zÞ ¼ o2/
or2

þ o2/
oz2

þ 1

r
o/
or

and jr/ðr; zÞj2 ¼ o/
or

� �2

þ o/
oz

� �2

; ðA:5Þ

we take their discrete forms as follows:

ðDh/Þi;j ¼
/i;jþ1 þ /i;j�1 þ /iþ1;j þ /i�1;j � 4/i;j

h2
þ
/iþ1;j � /i�1;j

2ih2
; ðA:6Þ
jðrh/Þi;jj
2 ¼

ð/i;jþ1 � /i;j�1Þ
2 þ ð/iþ1;j � /i�1;jÞ

2

4h2
: ðA:7Þ

The discrete boundary conditions are /mþ1;i ¼ �1 and /j;�1 ¼ /j;nþ1 ¼ �1 for i ¼ 0; 1; . . . ;m and

j ¼ 0; 1; . . . ; n. Here, we also set /0;j ¼ /1;j for all j at the z-axis. The boundary conditions are applied to the

formula (A.6) and (A.7) at the boundary. In our numerical simulation, as a comparison, we also imple-
mented a cell centered difference approach in the x (or r) direction, that is, the grid points in x are at the

points fðiþ 1=2Þhgn�1
i¼0 . We then introduce a ghost point at �h=2 and impose the boundary condition

/ð�h=2; zjÞ ¼ /ðh=2; zjÞ for all j. In such a discretization, grids points avoid the z-axis. Numerical exper-

iments indicate that the two discretization approaches yield effectively the same results.

Combine (A.1), (A.2), (A.6) and (A.7), we can get the discrete form of the energy, which we denote by Eh.

The existence of minimizers for Eh is easy to establish for any given mesh. The convergence of the discrete

minimizers to minimizers of the continuous problem can also be established as the mesh parameters goes to

zero, at least for any fixed parameter �. The limiting behavior for small � and small mesh parameter h is a
delicate issue that will be studied more carefully in our future works. For convenience, we let rEh denote

the gradient vector of Eh and nEh denote the Hessian matrix of Eh.

Gradient flow algorithm. Clearly, a critical point of the energy Eh corresponds to a grid function at which

all components of rEh vanish. For a more efficient implementation, we adopt a strategy to dynamically

constrain some values of the grid function during the solution process. In particular, at grid points that

correspond to small gradient components, changes of the grid function make insignificant contribution to

the variation in energy, thus, no update of the grid function values at those grid points is performed. As the

grids points correspond to large gradient components often are located near the interface, such a strategy
naturally leads to a fast algorithm that allow the computation being more focused in the vicinity of the

phase boundary (in the same spirit of the fast level set methods [35]). The details are given in the following.

Given a, b, e, and penalty parameters M1, M2.

1. Initialize uold ¼ u0 to match with an initial shape and take an initial small time step Dt.
2. Compute rEhðu0Þ, put constraints on the components fuig of u0 that correspond to grid points with

small foEh=ouig and their adjacent points.

3. Compute using Newton�s method to get a new solution u1 ¼ u0 � ðDEðu0Þ þ 2I=ðDtÞÞ�1ðrEhðu0Þþ
2ðu0 � uoldÞ=ðDtÞÞ where the updates only take place for unconstrained components.

4. Continue Newton�s iteration with

ukþ1 ¼ uk � ðDEðukÞ þ 2I=ðDtÞÞ�1ðrEhðukÞ þ 2ðuk � uoldÞ=ðDtÞÞ

for unconstrained components and for k ¼ 1; 2; . . . until the norm krEhðukÞ þ 2ðuk � uoldÞ=ðDtÞk is

smaller than some given tolerance. Denote the solution as unew. If the number of Newton steps in this

loop is larger than 5, stop.

5. If the number of iteration in step 4 is larger than 5, half Dt, return to step 3 to repeat Newton�s method; If

the iteration number is less than 3, double Dt.
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6. Compute krEðunewÞk, if small enough, exit. Otherwise set uold ¼ u0 ¼ unew and go to step 2.

As noted before, the linear systems in steps 3 and 4 are solved using the PCG method for sparse matrices

with an ICC preconditioner. Our numerical experiments indicate that the above algorithm is very stable

and robust.
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